Addition and Sublraction

The national curriculum for mathematics aims to ensure that all pupils:

1. become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
2. reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
3. can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence. By the end of Year 6, children should be able to choose the most appropriate approach to solve a problem: making a choice between using jottings (an extended written method), an efficient written method or a mental method.

The policy outlines concrete, pictorial and abstract practices. When children are secure and confident using a concrete or pictorial method they should be moved on accordingly. An example of a resource has been given but other representations, concrete or pictorial, should be used when appropriate. This will assist deeper understanding.
K.Lebbon
$+$

KEY STAGE 1

Children first learn to connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10s, to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations.
A key idea is that children will select methods and approaches based on their number sense. For example, in Year 1, when faced with $15-3$ and $15-13$, they will adapt their ways of approaching the calculation appropriately. The teaching should always emphasise the importance of mathematical thinking to ensure accuracy and flexibility of approach, and the importance of using known number facts to harness their recall of bonds within 20 to support both addition and subtraction methods. In Year 2, children will use their knowledge of number bonds and place value to calculate mentally.

Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, altogether, subtract, subtraction, find the difference, take away, minus, less, more, is equal to, addend, total, minuend, subtrahend, difference

Pupils should be encouraged to rely on number bonds knowledge rather than counting on as their main strategy.			
Bridging the 10 using number bonds	Children use a bead string to complete a 10 and understand how this relates to the addition.	Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10 .	Use a part- whole model and a number line to support the calculation.
Year 1 Subtraction			
Counting back and taking away	Children arrange objects and remove to find how many are left.	Children draw and cross out or use counters to represent objects from a problem.	Children count back to take away and use a number line or number track to support the method.

Year 2 Subtraction			
Subtractin g multiples of 10 Using number bonds to 10.	$\otimes \otimes \not \subset \varnothing \varnothing \varnothing \varnothing \varnothing$ 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	100 30$10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	7 tens subtract 5 tens is $\mathbf{2}$ tens. $70-50=20$
Subtractin g a singledigit number	Children to physically take away the 1 s .	$56-2=54$	$\begin{gathered} 9-3=6 \\ 39-3=36 \end{gathered}$

LOWER KEY STAGE 2
In Year 3 especially, the column methods are built up gradually. Children will develop their understanding of how each stage of the calculation, including any exchanges, relates to place value. The example calculations chosen to introduce the stages of each method may often be more suited to a mental method. However, the examples and the progression of the steps have been chosen to help children develop their fluency in the process, alongside a deep understanding of the concepts and the numbers involved, so that they can apply these skills accurately and efficiently to later calculations. The class should be encouraged to compare mental and written methods for specific calculations, and children should be encouraged at every stage to make choices about which methods to apply.
In Year 4, the steps are shown without such fine detail, although children should continue to build their understanding with a secure basis in place value. In subtraction, children will need to develop their understanding of exchange as they may need to exchange across one or two columns.
By the end of Year 4, children should have developed fluency in column methods alongside a deep understanding, which will allow them to progress confidently in upper Key Stage 2.

Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model, addend, total, minuend, subtrahend, difference

	$234+50$ There are 3 tens and 5 tens altogether. $3+5=8$ In total there are 8 tens. $234+50=284$	$\begin{aligned} & 5 \text { tens }+3 \text { tens }=8 \text { ten } \\ & 351+30=381 \end{aligned}$			$753+40=793$
$\begin{array}{\|l} \hline \text { 3-digit number } \\ \text { + 10s, with } \\ \text { exchange } \end{array}$	Understand the exchange of 10 tens for 1 hundred. \square	Add by exchanging 10 $184+20=?$ $184+20=204$	ns for 1 hu		$\begin{aligned} & 184+20=? \\ & \text { I can count in 10s ... } 194 \ldots 204 \\ & 184+20=204 \end{aligned}$ Use number bonds within 20 to support efficient mental calculations. $385+50$ There are 8 tens and 5 tens. That is 13 tens. $\begin{aligned} & 385+50=300+130+5 \\ & 385+50=435 \end{aligned}$

3-digit number + 2-digit number or a 3digit number	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent $154+72$. Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.	$275+16=?$ $275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children to visualise the concept and see how the method relates to place value.	A7: Column Addition
3-digit number +3 -digit number, exchange required	Use place value equipment to enact the exchange required. There are 13 ones. I will exchange 10 ones for 1 ten.	Model the stages of column addition using place value equipment on a place value grid.	Use column addition, ensuring understanding of place value at every stage of the calculation.

Subtracting $100 \mathrm{~s}$	$\begin{aligned} & 5-2=3 \\ & 500-200=300 \end{aligned}$	$\begin{aligned} & 4-2=2 \\ & 400-200=200 \end{aligned}$	$400-200=200$ I know that 7-4 = 3. Therefore, I know that $700-400=300$.
3-digit number - 1s, no exchange	Use number bonds to subtract the 1 s . $214-3=?$ 10 LOLLIES $\Delta * * *$ $\begin{aligned} & 4-3=1 \\ & 214-3=211 \end{aligned}$	Use number bonds to subtract the 1 s . $319-4=?$ $\begin{aligned} & 9-4=5 \\ & 319-4=315 \end{aligned}$	Understand the link with counting back using a number line. Use known number bonds to calculate mentally. $476-4=?$ $\begin{aligned} & 6-4=2 \\ & 476-4=472 \end{aligned}$
3-digit number -1s, exchange or	Understand why an exchange is necessary by exploring why 1 ten must be exchanged. Use place value equipment.	Represent the required exchange on a place value grid. $151-6=?$	Calculate mentally by using known bonds. $151-6=?$

Year 4 Subtraction					
Choosing mental methods where appropriate	What number will be left if we take away 300?	Th $-\infty$$7,646-40$	H T $-\infty$ $Q Q Q Q$$=7,606$	0 $0 \bigcirc 0$	3,501-2,000 3 thousands $\mathbf{- 2}$ thousands = 1 thousand $3,501-2,000=1,501$
Column subtraction with exchange	Understand why exchange of a 1,000 for 100 s , a 100 for 10 s , or a 10 for 1 s may be necessary. \rightarrow 晤㫛				$-\begin{array}{\|c\|ccc} \text { Th } & \mathrm{H} & \mathrm{~T} & 0 \\ \hline \boldsymbol{x} & 2 & 5 & 0 \\ & 4 & 2 & 0 \\ \hline & 8 & 3 & 0 \\ \hline \end{array}$
Column subtraction	$2,502-243=?$	2,502-243	3 = ?		$2,502-243=?$

UPPER KEY STAGE 2
Children build on their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage.
Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.
Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number, addend, total, minuend, subtrahend, difference

\% \&

where appropriate	$2,411,301+500,000=?$ This would be 5 more counters in the HTh place. So, the total is 2,911,301. $2,411,301+500,000=2,911,301$	£257,000 I added 100 th 1 thousand. 257 thousands thousands $\begin{aligned} & 257,000+100 \\ & 357,000-1,00 \end{aligned}$ So, $257,000+$	en subtrac sands 000 0 56,000	195 thousands +6 thousands $=201$ thousands So, $195,000+6,000=201,000$
Add fractions with different denominators and mixed numbers using the concept of equivalent fractions.	Fraction walls and circles should be used practically.	1 1 1	$\begin{array}{l\|l} \hline \frac{1}{2} & \\ \hline \frac{3}{6} & \\ \hline \hline & \frac{5}{6} \\ \hline \end{array}$	$\frac{1}{2}+\frac{1}{3}=\frac{3}{6}+\frac{2}{5}=\frac{5}{5}$
Year 6 Subtraction				
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtr place value re	ods alo s.	Compare and select methods. Use column subtraction when mental methods are not efficient.

			Use two different methods for one calculation as a checking strategy. $\begin{array}{rrrrr} \mathrm{H} & \mathrm{~T} & \mathrm{O} \cdot \text { Tth Hth } \\ \hline 3 & 0 & 9 \cdot & 6 & 0 \\ -2 & 0 & 6 \cdot 4 & 0 \\ \hline 1 & 0 & 3 \cdot 2 & 0 \\ \hline \end{array}$
Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands \square 150 800 So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10. $10,000-500=?$
Subtract fractions with different denominators and mixed numbers.	Fraction walls and circles should be used practically.	$\frac{3}{4}$ $\frac{1}{3}$? $\frac{9}{12}$ 12 $\frac{5}{12}$	$\frac{3}{4}-\frac{1}{3}=\frac{8}{12}-\frac{4}{12}=\frac{5}{12}$

