Mulliplication and Division (including Fractions)

The national curriculum for mathematics aims to ensure that all pupils:

1. become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
2. reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
3. can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence. By the end of Year 6, children should be able to choose the most appropriate approach to solve a problem: making a choice between using jottings (an extended written method), an efficient written method or a mental method.

The policy outlines concrete, pictorial and abstract practices. When children are secure and confident using a concrete or pictorial method they should be moved on accordingly. An example of a resource has been given but other representations, concrete or pictorial, should be used when appropriate. This will assist deeper understanding.

K.Lebbon

Multiplication and Division

Children develop an awareness of equal groups and link this with counting in equal steps, starting with $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . In Year 2 , they learn to connect the language of equal groups with the mathematical symbols for multiplication and division.
They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation.
In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations.
Children begin to recall some key multiplication facts, including doubles, and an understanding of the 2,5 and 10 times-tables and how they are related to counting.

Fractions

In Year 1, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and non-examples, based on their awareness of equal parts of a whole.
In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

Key language: group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, divide, share, shared equally, times-table, dividend, divisor, quotient, product, factors

Sort a whole set people and objects into equal groups.

There are 10 children altogether.
There are 2 in each group.
There are 5 groups.

Sharing

Share a set of objects into equal parts and work out how many are in each part.

There are 10 in total.
There are 5 in each group.
There are 2 groups.

Sharing

Sketch or draw to represent sharing into equal parts. This may be related to fractions.

Sharing

10 shared into 2 equal groups gives 5 in each group.

	12 shared equally between 2. They get 6 each. Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared	20 shared into 5 equal parts. There are 4 in each part.	0000000000000000000

		$12 \div 3=4$ 000000000000 $12 \div 4=3$ $12 \div 6=2$ \square $12 \div 2=6$	There are 4 groups now. 12 divided into groups of 3. $12 \div 3=4$ There are 4 groups.
Using known times-tables to solve divisions	Understand the relationship between multiplication facts and division. 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	Link equal grouping with repeated subtraction and known times-table facts to support division. 40 divided by 4 is 10 .	$\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \end{aligned}$ I used the 10 times-table to help me. $3 \times 10=30$ I know that 3 groups of 10 makes 30, so I know that 30 divided by 10 is 3 . $3 \times 10=30 \text { so } 30 \div 10=3$

Multiplication and Division

Children build a solid grounding in times-tables, understanding the multiplication and division facts in tandem. As such, they should be as confident knowing that 35 divided by 7 is 5 as knowing that 5 times 7 is 35 .
Children develop key skills to support multiplication methods: unitising, commutativity, and how to use partitioning effectively.
Unitising allows children to use known facts to multiply and divide multiples of 10 and 100 efficiently. Commutativity gives children flexibility in applying known facts to calculations and problem solving. An understanding of partitioning allows children to extend their skills to multiplying and dividing 2 - and 3 -digit numbers by a single

digit.

Children develop column methods to support multiplications in these cases.
For successful division, children will need to make choices about how to partition. For example, to divide 423 by 3 , it is effective to partition 423 into 300 , 120 and 3 , as these can be divided by 3 using known facts.
Children will also need to understand the concept of remainder, in terms of a given calculation and in terms of the context of the problem.

Fractions

Children develop the key concept of equivalent fractions, and link this with multiplying and dividing the numerators and denominators, as well as exploring the visual concept through fractions of shapes. Children learn how to find a fraction of an amount and develop this with the aid of a bar model and other representations alongside. in Year 3, children develop an understanding of how to add and subtract fractions with the same denominator and find complements to the whole. This is developed alongside an understanding of fractions as numbers, including fractions greater than 1. In Year 4, children begin to work with fractions greater than 1.
Decimals are introduced, as tenths in Year 3 and then as hundredths in Year 4. Children develop an understanding of decimals in terms of the relationship with fractions, with dividing by 10 and 100 , and with place value.

Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, dividend, divisor, quotient, product, factors, denominator, numerator

	Concrete	Pictorial	Abstract
Year 3 Multiplication			
Understanding equal grouping and repeated addition	I can see 3 groups of 5 . I can see 5 groups of 3 .	This is 3 groups of 4 . This is 4 groups of 3 .	Children understand the link between repeated addition and multiplication. 8 groups of 3 is 24 . $\begin{aligned} & 3+3+3+3+3+3+3+3=24 \\ & 8 \times 3=24 \end{aligned}$
Using commutativity to support understanding of the timestables	There are 6 groups of 4 pens. There are 4 groups of 6 bread rolls. I can use $6 \times 4=24$ to work out both totals.	0000 0000 0000 0000 $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \end{aligned}$	I need to work out 4 groups of 7 . I know that $\mathbf{7 \times 4 = 2 8}$ so, I know that 4 groups of $7=28$ and 7 groups of $4=28$.

Year 3 Division											
Using timestables knowledge to divide	24 divided into groups of 8. There are 3 groups of 8.	$48 \div 4=12$ 48 divided into groups of 4. There are 12 groups. $\begin{aligned} & 4 \times 12=48 \\ & 48 \div 4=12 \end{aligned}$	I need to work out 30 shared between 5. I know that $6 \times 5=30$ so I know that $30 \div 5=6$. $\begin{aligned} & 24 \div 4=6 \\ & 24 \div 6=4 \end{aligned}$ Children understand how division is related to both repeated subtraction and repeated addition. $24 \div 8=3$								
Understanding remainders	Use equipment. $\\|\\|\\|\\|\\|\\|\\|\\| \square \square \square$ There are 13 sticks in total. There are 3 groups of 4 , with 1 remainder.	Use images. $22 \div 5=4 \text { remainder } 2$	$\begin{aligned} & 22 \div 5=? \\ & 3 \times 5=15 \\ & 4 \times 5=20 \\ & 5 \times 5=25 \ldots \text { this is larger than } 22 \\ & \text { So, } 22 \div 5=4 \text { remainder } 2 \end{aligned}$								

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& D4: Grouping ma Number Line
\[
17+5=3 r^{2}
\] \\
\hline Using known facts to divide multiples of 10 \& \begin{tabular}{l}
Make 6 ones divided by 3.
\(\square\)
\(\square\) \\
Now make 6 tens divided by 3. \\
What is the same? What is different?
\end{tabular} \& \begin{tabular}{l}
Divide multiples of 10 by unitising. \\
12 tens shared into 3 equal groups. 4 tens in each group.
\end{tabular} \& \begin{tabular}{l}
Using known times-tables.
\[
180 \div 3=?
\] \\
180 is 18 tens. \\
18 divided by 3 is 6 . \\
18 tens divided by 3 is 6 tens.
\[
\begin{aligned}
\& 18 \div 3=6 \\
\& 180 \div 3=60
\end{aligned}
\]
\end{tabular} \\
\hline 2-digit number divided by 1-digit number, no remainders \& Children explore dividing 2-digit numbers by using place value equipment.

$$
48 \div 2=?
$$ \& \& \[

$$
\begin{gathered}
60 \div 2=30 \\
8 \div 2=4 \\
30+4=34 \\
68 \div 2=34
\end{gathered}
$$
\]

\hline
\end{tabular}

	First divide the 10s． \square प11川11 म11111 \square Then divide the 1 s ． \square ロロロ日 ロロロロ	I need to partition 42 differently to divide by 3. $\begin{aligned} & 42=30+12 \\ & 42 \div 3=14 \end{aligned}$	Children partition flexibly to divide where appropriate． $\begin{aligned} & 42 \div 3=? \\ & 42=40+2 \end{aligned}$ I need to partition 42 differently to divide by 3. $\begin{aligned} & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \\ & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$
2－digit number divided by 1－digit number，with remainders	Make 29 from place value equipment． Share it into 2 equal groups． There are two groups of 14 and 1 remainder．	Use place value equipment to understand the concept of remainder in division． $29 \div 2=?$ $29 \div 2=14$ remainder 1	Partition to divide，understanding the remainder in context． 67 children try to make 5 equal lines． $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \end{aligned}$ $17 \div 5=3$ remainder 2 $67 \div 5=13$ remainder 2 There are 13 children in each line and 2 children left out．

Each sheet has 2×5 stickers.
There are 3 sheets.
There are $5 \times 2 \times 3$ stickers in total.
$5 \times 2 \times 3=30$

Multiplying a 2-digit number by a 1 -digit number, expanded column method
$2 \times 6 \times 10=120$
$12 \times 10=120$
$10 \times 6 \times 2=120$
$60 \times 2=120$

So, $24 \times 5=120$

$$
12 \times 10=120
$$

So, $24 \times 5=120$

	8 ones divided into 2 equal groups 4 ones in each group 8 tens divided into 2 equal groups 4 tens in each group 8 hundreds divided into 2 equal groups 4 hundreds in each group	$\begin{aligned} & 9 \div 3=\square \\ & 9 \div 3=3 \\ & 9 \text { tens divided by } 3 \text { is } 3 \text { tens. } \\ & 9 \text { hundreds divided by } 3 \text { is } 3 \text { hundreds. } \end{aligned}$	
Dividing 2digit and 3digit numbers by a single digit by partitioning into 100s, 10s and 1 s	$39 \div 3=\text { ? }$ $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	$39 \div 3=\text { ? }$ $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	$142 \div 2=?$
Dividing 2digit and 3-	$42 \div 3=?$	$84 \div 7=$?	Make decisions about appropriate partitioning based on the division required.

Multiplication and Division

Building on their understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2-digit numbers.
Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000 . Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area mode (grid method) and place value. In Year 6, children develop a secure understanding of how division is related to fractions.
Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions

Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.
Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.
Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: $50 \%, 25 \%, 10 \%$ and 1%.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number, dividend, divisor, quotient, product, factors, denominator, numerator

Multiplying 2

digit number

 by 2-digit numbers
Partition one number into 10 s and 1 s , then
add the parts.
$23 \times 15=$?
There are 1,716 boxes of cereal in total.

	1	4	3	
\times		1	2	
	2	8	6	143×2
1	4	3	0	143×10
1	7	1	6	143×12

Progress to include examples that require multiple exchanges as understanding, confidence and fluency build.
$1,274 \times 32=$?
First multiply 1,274 by 2.
$143 \times 12=1,716$

Multiply proper fractions and mixed numbers by whole numbers.	Use fraction circles to support their understanding. FK: Calculating with Fractions 5xb $1 \frac{1}{4} \times 3=3 \frac{3}{4}$

Understandin g factors and prime numbers

FK: Calculating with Froctions
${ }_{5 \times 0}$

Year 5
 Division

$$
\frac{2}{5} \times \frac{7}{5}=\frac{8}{5}=7 \frac{8}{5}
$$

Understand that prime numbers are numbers with exactly two factors.

```
13\div1=13
13\div2=6r1
13\div4=4r 1
```

Children should be able to calculate the answer mentally or with support of jottings (as seen in pictorial stage) for difficult calculations.

> I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder.
> I know that 33 is not a prime number as it can be divided by $1,3,11$ and 33 .

	So, $4,000 \div 1,000=4$	380 is 38 tens. $\begin{aligned} & 38 \times 10=380 \\ & 10 \times 38=380 \\ & \text { So, } 380 \div 10=38 \end{aligned}$	$3,200 \div 100=32$ So, the digits will move two places to the right.
Dividing by multiples of 10, 100 and 1,000	Use place value equipment to represent known facts and unitising. 15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	Represent related facts with place value equipment when dividing by unitising. 180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$ 12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups.	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $\begin{aligned} & 3,000 \div 5=600 \\ & 3,000 \div 50=60 \\ & 3,000 \div 500=6 \end{aligned}$ $\begin{aligned} & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$

		$1200 \div 400=3$	
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting.	$\begin{array}{rrrrr} & 0 & 5 & 5 & 6 \\ \hline 7 & 3{ }^{3} 8{ }^{3} q & 4 \end{array}$
	There is 1 group of 2 hundreds.		$3,892 \div 7=556$
	There are 3 groups of 2 tens. There are 4 groups of 2 ones.		Use multiplication to check.
	$264 \div 2=134$		$556 \times 7=$?
			$\begin{aligned} & 6 \times 7=42 \\ & 50 \times 7=350 \\ & 500 \times 7=3500 \\ & 3,500+350+42=3,892 \end{aligned}$
		Lay out the problem as a short division. There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones. Work with divisions that require exchange.	

\square	20 tenths divided by 10 is 2 tenths.

		1 2 3 5 \times 2 1 5 3 0 1×5 2 0 0 1×30 1 0 0 0 $1 \times 1,000$ 1 0 0 20×5 6 0 0 20×30 4 0 0 0 20×200 2 0 0 0 0 $20 \times 1,000$ 2 5 9 3 5 $21 \times 1,235$	
Using knowledge of factors and partitions to compare methods for multiplication s	Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately.	Use a known fact to generate families of related facts. Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$

Divide proper \quad Children to use the fractions bars or
fractions by fraction circles available in the resources whole room

